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Abstract

Traditional 2D cartoons are usually produced under a low frame rate because drawing keyframes by

hand is labour-intensive. It would be very helpful if new frames could be interpolated automatically.

Although Video Frame Interpolation (VFI) attempts have been made by both researchers and artists,

however, existing video interpolation methods perform poorly on animation videos because they are

designed to analyse natural video data. Unlike natural videos, animation videos consist of only outlines

and textureless colour blocks. Moreover, due to the low FPS nature, the displacements between each

frame are even larger. There is very little research on this topic and the state-of-the-art method still

suffers from many issues, such as Blurry interpolated results, Ineffective occlusion handling mechanism

in motion estimation, and Colour bleeding results.

We propose a novel deep network by integrating a Global Motion Aggregation (GMA) module along

with the current state-of-the-art animation video interpolation model AnimeInterp. We aim to tackle the

occlusion handling problem since GMA can propagate the motion information of non-occluded points

to the occluded pixels. In addition, we also reset the training goal from L1 loss to a Style loss which

makes the trained model generate sharp and perceptually pleasant predictions.

We train and evaluate all proposed models on the ATD-12K dataset. The AnimeInterp + GMA

model trained on L1 loss outperforms the original AnimeInterp model by 0.001 in SSIM but possesses

a difference of 0.062 dB in PSNR. In addition, we also introduce LPIPS to emphasise the perceptual

quality of the interpolated results. The AnimeInterp + GMA model trained on the Style loss surpasses

the AnimeInterp trained on the same loss function by 1.417 in LPIPS.
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CHAPTER 1

Introduction

Traditionally, an animated series consists of thousands of illustrations, which are typically painted by

hand. With a growing interest in traditional-styled animations from a global audience, studios and

animators are under extreme pressure due to the incredibly labour-intensive process. As a result, in

practice, it is common to see producers replicate one drawing two or three times to ease the burden (at the

cost of reducing the actual frame rate) and reuse similar frames to avoid another hand-drawing process.

Many research attempts have been made to aid the animators: Sykora et al. [6] propose an interactive

tool which simplifies the sketch colorization process by filling the color within a region. Whited et al.

[7] present the BetweenIT system for the user-guided automation of tight inbetweening. However, those

tools and systems only solve a proportion of the process such as colourisation or in-between frames

productions. There are still many aspects that require manual labour. Is it possible to automatically

generate without any hand drawings? With the aid of recent advancements in Computer Vision, it

is possible. More specifically, Video Frame Interpolation (VFI), a method of generating intermediate

frames directly from a video sequence, can be the solution to reduce animators’ burden.

1.1 Motivation

Different from real-life videos, cartoon frames are occupied with contours and colour blocks. There

are not any existing fine textures and this leads to the denial of a variety of VFI models which signifi-

cantly depend on the textures to perform motion estimation. This type of characteristic has already been

identified in [4].

We would like to go one step deeper to discuss the primary reason why separate approaches toward VFI

and Animation Frame Interpolation (AFI) should be applied. It is strictly related to the idea of ground

truths. Natural videos are a recording of the moment that happens at a time point and location. If we

have another person holding the same camera with the same angle at the same time and exact location,

1
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he can easily re-produce a video recording. The two video clips recorded should be identical and the

pixels collected should be the same if we fix all the variables. Hence, natural videos contain the concept

of ground truth.

While for animations, cartoon frames are not observations of the one and only universe. They can vary.

If you ask an animator to re-produce a keyframe of his previous work, it is likely to end up with a slightly

different frame. However, if the animator substitutes the old frame with a new frame. You probably will

not notice since the animation is still perceptually smooth compared to the previous version. Therefore,

we believe that for AFI, instead of a single ground truth, there exists a group of correct answers and those

frames share common characteristics which we define as Style. So if an interpolated frame matches the

perceptual similarity among the Style group, the output is acceptable.

In the aspect of applications, VFI can help in tasks such as Video Restoration which is essentially critical

to the information generated in the interpolated frames. For AFI, it is more likely to be applied to post-

process animation videos with the purpose of providing entertainment in which case, the truthness of

synthesised results is less significant or the ground truth ,in this case, is subjective. Even the original

creators cannot decide what the ground truth of the mid-frame "is", but what the ground truth is expected

to be "like".

Therefore, without strictly enforcing the pixel-wise difference, instead, we give the model a certain

degree of freedom but guide it with perceptual quality metrics. We believe this method will still yield

promising results and in later sections, we will also evaluate and compare both approaches.

1.2 Contributions

The contributions of this work can be summarized as follows:

(1) First to justify the different expectation between Video Frame Interpolation and Animation

Frame Interpolation.

(2) Integrate the Global Motion Aggregation module [3] into Recurrent Flow Refinement Module

of AnimeInterp [4].

(3) First to introduce the Style loss in Animation Frame Interpolation.
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1.3 Thesis Structure

The overall structure of the thesis is organised as follows:

• Chapter 2 reviews the literature in the related field of studies ranging from Video Frame Inter-

polation to Sketch-based approaches.

• Chapter 3 describes the methodology of the entire computational model.

• Chapter 4 presents the experiments setup.

• In Chapter 5, we evaluate the results both quantitatively and qualitatively.

• We conclude and suggest directions for future work in Chapter 6.



CHAPTER 2

Background and Related Work

2.1 Perceptual Quality Metrics

Though humans are relatively proficient at comparing two images perceptually, the underlying processes

are thought to be quite complicated. Even this seemingly straightforward task of comparing visual

patterns poses a wide-open problem in computer vision. Not only because visual patterns are high-

dimensional and highly correlated, but the notion of visual similarity is also often very subjective.

FIGURE 2.1: Mean Squared Error (hence of PSNR) Counter Example [1]

Classical pixel-wise measures such as Peak Signal-to-Noise Ratio (PSNR) are insufficient for structured

outputs such as images due to the per-pixel independence. One typical example is Figure 2.1. What we

need is to determine the “perceptual distance,” which measures how similar two images are in a way that

coincides with human judgment. Structural Similarity Index (SSIM) [8] is then proposed based on three

4
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aspects: brightness, contrast, and structure. However, [9] demonstrates the mathematical properties of

SSIM and show that it is not adhering to properties of the human visual system. The inapplicability

of PSNR and SSIM for the field of Image Super Resolution has also been discussed in other studies

[10, 11].

According to [12], human judgments of similarity consists of three properties:

(1) Depend on high-order image structure

(2) Are context-dependent

(3) may not actually constitute a distance metric

With many direct approaches failing to generalise, Kim and Lee [13] use a CNN to predict visual similar-

ity by training on low-level differences. The computer vision community has discovered that the internal

activations of deep convolutional networks trained on image classification task, are often correspond to

human perceptual judgments. Within [12], Learned Perceptual Image Patch Similarity (LPIPS) met-

ric is also proposed and it has been widely used in various tasks such as Frame interpolation, Video

deblurring, Super-resolution. According to comparison of various Image Quality Assessment (IQA)

metrics [2] shown in Figure 2.2, LPIPS outperforms all the other methods.

FIGURE 2.2: Comparison between metrics in different image processing tasks [2]
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2.2 Optical Flow Estimation

FIGURE 2.3: Pyramidal Processing: By down-sampling, a large motion becomes smaller.

Optical Flow Estimation is a fundamental procedure for various image and video processing tasks such

as autonomous driving [14] and multi-view reconstruction [15]. Optical flow is the motion of objects

between consecutive frames of the sequence, caused by the relative movement between both the object

and camera. With the brightness constancy, a typical computation of optical flow is attained by esti-

mating a dense motion field indicating the displacement of each pixel in consecutive images. And the

reliability of the process becomes one of the main challenges in computer vision. Most top-performing

methods adopt the energy minimisation approach introduced by the seminal work of Horn and Schunck

[16]. However, operating on a complex energy function is computationally expensive for real-time ap-

plications. Inspired by the success of convolutional neural network (CNN), FlowNetS and FlowNetC are

proposed [17] and show the possibility of direct optical flow estimation based on raw images. Followed
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by SpyNet [18] which utilises pyramidal processing to handle large motions in flow estimation. Pyrami-

dal approach is an influential method to tackle large motion problem until today. (A sample illustration is

shown in Figure 2.3) In 2018, PWC-Net [19] outperforms all previous models in both performance and

runtime by revisiting the fundamental principles and utilising a harmonious combination of Pyramidal

processing, Warping and Cost volume. Teed and Deng proposed RAFT [20], an end-to-end differen-

tiable model that leverages 4D cost volume and an iterative refinement unit with weights sharing, further

improving the performance in major optical flow datasets.

2.2.1 Global Motion Aggregation

There are many factors that can make optical flow prediction a hard problem, including strong reflection,

large motions, defocus blur, and texture less regions. Among these challenges, occlusion is one of

the most difficult and under-explored. Similar to other challenges, occlusion violate the brightness

constancy constraint [16]. Various solutions are proposed to compensate for the problem, while among

all, the Global Motion Aggregation (GMA) [3] method has shown strong potential in motion estimation

of animation frames.

FIGURE 2.4: A typical occlusion scenario. [3]

When the local matching information is absent, the motion information has to be propagated from other

pixels. While traditional approaches use convolutions to propagate the information, this method suffers

from the drawback of the limited size of the receptive field as convolution is a local operation.

They propose a non-local approach based on the assumption that object motion is generally homoge-

neous across frames. Knowing what pixels are related to a pixel, or what object it belongs to, can be used

to compensate for occlusions because the motion information of the non-occluded self-similar points can

be propagated to the occluded points.
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2.3 Video Frame Interpolation

Video Frame Interpolation (VFI) is an active area of research in computer vision with applications such

as video post-processing and video restoration tasks. It aims to increase the frame rate of a video

sequence by interpolating the intermediate frames between consecutive input frames.

A variety of recent work has been published regarding general video interpolation. Broadly, these works

fall into following categories. Phase-based [21, 22] methods utilise phase information to learn the motion

relationship for multiple video frame interpolation. Kernel-based [23, 24] methods formulate video

frame interpolation as a spatially adaptive convolution whose kernel is generated using a CNN given

the input frames but suffers from relatively large motion due to limited kernel size. CAIN [25] is an

efficient flow-free method that employs the PixelShuffle operator and channel attention to capture the

motion information implicitly. The most recent state-of-the-art has gravitated more towards flow-based

methods, following corresponding advancements in optical flow estimation summarised in Section 2.2.

DAIN [26] purpose a depth-aware video frame interpolation method that tightly integrates optical flow,

local kernels, depth maps, and learnable hierarchical features for high-quality frame synthesis. Jiang et

al. [27] propose SuperSlomo using the linear combination of the two bi-directional flows as an initial

approximation of the intermediate flows and then refine them using U-Net. Xu et al. [28] propose QVI

to exploit four consecutive frames and flow reversal filter to get the intermediate flows. Huang et al. [29]

build a lightweight pipeline that achieves state-of-the-art performance while maintaining the conciseness

of direct intermediate flow estimation. Flow-based methods can be further classified by forward [30] and

backward [31] warping.

2.3.1 Animation Frame Interpolation (AFI)

Animation frame interpolation, as a sub-domain of VFI, is only recently defined in AnimeInterp [4],

which is the only available model in this research area. According to AnimeInterp, the difference be-

tween animation videos and real-life videos is related to two unique characteristics:

• Cartoons comprise lines and smooth colour pieces. The smooth areas lacks textures and make

it difficult to estimate accurate motions on animation videos.

• Cartoons express stories via exaggeration. Some of the motions are non-linear and extremely

large.
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FIGURE 2.5: (a) The overall pipeline of AnimeInterp. (b) The inner structure of the
SGM module. (c) The workflow of the RFR module. [4]

As shown in Figure 2.5, two dedicated modules are introduced to resolve aforementioned difficulties:

(1) Segment-Guided Matching resolves the "lack of textures" challenge by exploiting global

matching among colour pieces that are piece-wise coherent.

(2) Recurrent Flow Refinement resolves the "non-linear and extremely large motion" challenge

by recurrently refining the predictions using a transformer-like architecture.

Comprehensive experiments demonstrate the effectiveness of this model in interpolating animation data

but there are still shortcomings. Mentioned by [32], limitations of the work consist of:

• Use of unscalable methods in ATD-12K data collection.

• Focus on pixel-perfect performance while having a loss and architecture resulting in blurriness

and artifacts.

• Significantly slow due to inefficient segment-matching module in inference time.

• Perceptual quality is well evaluated quantitatively and qualitatively.

We re-produce AnimeInterp’s results as a preliminary experiment for further quantitative and qualitative

analysis refer to Section 5.1.1.
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FIGURE 2.6: FILM Architecture Overview [5]

2.3.2 Frame Interpolation for Large Motion (FILM)

FILM is an elegant method that effectively tackle large motions. See in Figure 2.6, the contribution of

the work can be summarised into:

• End-to-end trainable. Recent VFI methods use multiple networks to estimate optical flow or

depth [26] and a separate network that is dedicated to frame synthesis. This is often complex

and requires scarce optical flow or depth ground truth. FILM proposed a unified, single-stage

model for large motion frame interpolation. It can be directly trained from frame triplets

and doesn’t require additional optical flow.

• Effective feature extraction with weights sharing. FILM has a scale-agnostic bi-directional

motion estimation module with a multi-scale feature extractor [33] that shares the same weights

at each pyramid level.

• Well-designed Loss Function. The gram matrix loss [34, 35, 36] is used to generated crisp

and pleasing intermediate frames.

As a result, this is the first work that utilises shared feature extraction and Gram matrix loss for frame

interpolation. FILM outperforms other methods and handles large motion well. However, as a limitation,

FILM produces unnatural deformations when the in-between motion is extreme. While the resulting
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videos are still appealing, the subtle movements may not look natural. The single-model, weight-shared,

and Gram matrix loss methods can all be used for interpolating animation frames. We also run some

preliminary experiments on FILM refer to Section 5.1.2.



CHAPTER 3

Method

SGM RFR + 
GMA

Warping 
and 

Synthesis

𝐼𝐼0, 𝐼𝐼1 𝑓𝑓0→1,𝑓𝑓1→0 𝑓𝑓0→1′ ,𝑓𝑓1→0′ 𝐼𝐼1
2

FIGURE 3.1: The overall pipeline of AnimeInterp+GMA.

The overview of the proposed network AnimeInterp+GMA is shown in Figure 3.1. Given two input

frames (I0, I1), the coarse flows f0→1 and f1→0 between I0 and I1 in both directions are estimated

through the AnimeInterp’s SGM module [4] in Section 3.1. Then the coarse flows are set as the initial-

isation and fed into the RFR + GMA module. The flows are gradually refined and finally produced as

the fine flows f ′
0→1 and f ′

1→0 in Section 3.2. Lastly, based on f ′
0→1 and f ′

1→0, the network trained with

a ground-truth It warps I0 and I1 to synthesise a mid-frame Ît with time t ∈ (0, 1). During training and

evaluation, We set t = 0.5 to comply with the training triplets but can predict more in-between frames

by recursively invoking the model.

3.1 Segment-Guided Matching (SGM)

For classical 2D animations, scenes and objects are mostly contoured with explicit outlines while each

enclosed segment is filled with one single colour. Despite the large motion of moving objects, the colours

are likely to remain stable from one frame to another. In contrast to natural video frames where the

objects contain complex patterns of texture and this generally will not work well to establish a segment-

to-segment matching, but in animation frames, those can be strong clues to find appropriate semantic

matching for the colour pieces. SGM module leverages the clues to estimate the piece-wise motions and

12
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then generates coarse optical flows for later handling procedures. The procedure is illustrated in Figure

3.2.

𝐼𝐼0, 𝐼𝐼1 Contour 𝑆𝑆0, 𝑆𝑆1

VGG Feature Extraction
Super Pixel Pooling

Feature Matrix

N

N

𝐾𝐾0

𝐾𝐾1

𝐾𝐾0 × 𝐾𝐾1
Matching 

Degree Matrix 

𝐶𝐶 1,1 𝐶𝐶 1,2 …

𝐶𝐶 𝐾𝐾0,𝐾𝐾1

𝐼𝐼0 𝐼𝐼1

Colour Pieces Colour Pieces
𝛴𝛴

𝑓𝑓0→1,𝑓𝑓1→0

FIGURE 3.2: The inner structure of the SGM module.

3.1.1 Colour Piece Segmentation

Following Zhang et al.’s work [37], the Laplacian filter is adopted to contour the input frames. Then

the "trapped-ball" algorithm is applied to fill the contours and generate colour pieces. Up to this stage,

a segmentation map S ∈ NH×W is obtained, where pixels of each colour piece is labeled by an identity

number. We notate the segmentation map of I0 and I1 as S0 and S1, while S0(i) represents the pixels in

the ith colour piece of I0 and similar for S1(i).
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3.1.2 Feature Extraction

The input frames I0 and I1 are also fed into a pre-trained VGG-19 model [38]. The features located

at relu1_2, relu2_2, relu3_4, relu4_4 layers are extracted and assembled per segment using super-pixel

pooling proposed in [39]. After the pooling, we can attain a K × N feature matrix, where K is the

number of colour pieces and N is the dimension of the feature vector that is correspond to a colour

piece. We use F0 and F1 to denote the feature matrices for I0 and I1.

3.1.3 Colour Piece Matching

At this stage, we can use F0 and F1 to estimate a consistent mapping between colour pieces from frame

I0 and I1. A forward map M0→1 and a backward map M1→0 can then be predicted where a map

Mi→j(n) indicates the maximum likelihood for the nth colour piece in frame i correspond to the colour

piece in frame j. To measure the likelihood between two colour pieces i, j (i ∈ S0, j ∈ S1), an affinity

metric A is computed using F0 and F1:

A(i, j) =

N∑
n

min (F̃0(i, n), F̃1(j, n)) (3.1)

where F̃0(i, n) = F0(i,n)∑
n F0(i,n)

is the normalised feature of F0. The same also applies to F̃1(i, n). This

affinity metric measures the similarities of all pairs (i, j) globally.

To avoid potential outliers, two constraint penalties namely the distance penalty and the size penalty are

exploited.

Firstly, it is assumed that the displacement between two matching colour pieces is not overly large.

Hence, the distance penalty is defined as the ratio of the distance between the centroids of two colour

pieces and the diagonal length of the image:

Ldist(i, j) =
| P0(i)− P1(j) |√

H2 +W 2
(3.2)

where P0(i) and P1(j) represent the centroids of S0(i) and S1(j), | · | denotes the distance between two

centroids. This penalty is only applied to the matching with the displacement larger than 15% of the

diagonal length of the image.
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Secondly, it is assumed that the sizes of matched pieces should be similar. The size penalty is defined

as:

Lsize(i, j) =

∣∣∣∣ |S0(i)| − |S1(j)|
H ×W

∣∣∣∣ (3.3)

where | · | denotes the number of pixels in a cluster.

Combining all the items above, a matching degree matrix C can be computed as:

C = A− λdistLdist − λsizeLsize (3.4)

where λdist and λsize are set to 0.2 and 0.05 in the implementation.

For each pair (i ∈ S0, j ∈ S1), the matching degree matrix C(i, j) indicates the likelihood. The forward

map M0→1 and backward map M1→0 can then be found as:

M0→1(i) = argmax
j

(C(i, j)),M1→0(j) = argmax
i

(C(i, j)) (3.5)

where for the ith colour piece in S0, the most likely matching piece in S1 is the one with maximum

matching degree, and vice versa.

3.1.4 Flow Generation

After attaining M0→1 and M1→0, we can use them to predict dense bidirectional optical flows f0→1 and

f1→0. Here we only describe the procedure to compute f0→1 since f1→0 can be computed by reversing

the mapping order.

For each matched pair (i, j) where j = M0→1(i), we first compute the shift base (displacement between

the centroids):

f i
c = P1(j)− P0(i) (3.6)

Then we compute the local deformation f i
d(u, v) by variational optimisation:

E(f i
d(x)) =

∫
|Ij1(x+ f i

c(x) + f i
d(x))− Ii0(x)|dx+

∫
(|∇u(x)|2 +∇|v(x)|2)dx (3.7)

where Ii0 represents a masked I0 where pixels not belonging to ith colour piece are set to 0. The same

also applies to Ij1 .
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The optical flow for pixels in ith colour piece is then f i
0→1 = f i

d + f i
c . And the final flow for the whole

image can be computed by adding up all piece-wise flows together:

f0→1 =
∑
i

f i
0→1 (3.8)

To further avoid outliers, we abandon the flow of ith piece (set f i
0→1 to zero) if it does not satisfy the

mutual consistency M1→0(M0→1(i)) ̸= i. This will prevent the subsequent flow refinement step to be

misled by the low-confidence matching.

3.2 Recurrent Flow Refinement and Global Motion Aggregation Network

(RFR+GMA)

In this section, we refine the coarse optical flows f0→1 and f1→0 computed from the SGM into finer

views f ′
0→1 and f ′

1→0 through a deep recurrent refinement network. It is modified from AnimeInterp’s

RFR network [4] by embedding the Global Motion Aggregation module [3]. The workflow is shown in

Figure 3.3.

𝐼𝐼0, 𝐼𝐼1

𝑓𝑓0→1,𝑓𝑓1→0
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3-Layer 
Conv

2D Matching 
Features

2D 
Context 
Features

4D 
Correlation 

Volume
2D Motion 
Features

Concatenated 
Features

Δ𝑓𝑓 𝑡𝑡

Aggregated 
Motion 

Features

𝑓𝑓 0

𝑓𝑓0→1′ ,𝑓𝑓1→0′
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FIGURE 3.3: The workflow of the RFR+GMA module.

3.2.1 Global Motion Aggregation Module

For the GMA module, we utilise the standard implementation without using a 2D relative positional

embedding vector, which achieved the best result according to [3]. The structure can be viewed in

Figure 3.4.
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FIGURE 3.4: The inner structure of the GMA module.

Let x ∈ RN×Dc denotes the context (appearance) features and y ∈ RN×Dm denote the motion features,

where H , W , D are the height,width, channel dimension of the feature map, and N = HW . The ith

feature vector is denoted as xi ∈ RDc .

The GMA module computes the feature vector update as an attention-weighted sum of the projected

motion features. The aggregated motion features are given by:

ŷi = yi + α
N∑
j=1

f(θ(xi), ϕ(xj))σ(yj) (3.9)

where α is a learned scalar parameter initialised to 0. θ, ϕ and σ are the projection functions for the

query, key and value vectors given by:

θ(xi) = Wqryxi, (3.10)

ϕ(xi) = Wkeyxi, (3.11)

σ(xi) = Wvalyi, (3.12)

where Wqry, Wkey ∈ RDc×Dc and Wval ∈ RDm×Dm . All of them are learnable parameters.

The final output is a concatenation of three feature maps [y|ŷ|x] which will then be passed to a convolu-

tional GRU [40] to decode and obtain the corresponding residual flow.

f is a similarity attention function given by:

f(ai, bi) =
exp (aTi bj/

√
D)∑N

j=1 exp (a
T
i bj/

√
D)

(3.13)
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3.2.2 Recurrent Flow Refinement Module

According to [4], there are two main motivations for introducing the RFR module:

(1) In Section 3.1, we abandon non-robust colour-piece pairs, which leaves null flow values in

some locations. RFR is capable of remedying those with valid flows.

(2) The SGM module is beneficial for large displacements but less effective to predict precise de-

formation especially for the non-linear and exaggerated motions in animation frames. Hence,

a recurrent refining approach can be the complement to the coarse piece-wise approach.

Moreover, the original AnimeInterp’s RFR architecture is also modified from RAFT [41]. Since both

RFR and GMA are extended from RAFT, it is possible that we integrate GMA into RFR to improve its

robustness towards occlusion problem.

3.2.3 Overall Workflow

For the sake of brevity, we will demonstrate the process to attain f ′
0→1 from f0→1 since f ′

1→0 can be

attained in similar fashion.

For initialisation, a pixel-wise confidence map g is learned to mask the unreliable values away from

the coarse flow f0→1 via a three-layer CNN (3 layer Conv). The base flow f
(0)
0→1 is now attained by

multiplying f0→1 with exp{−g2}.

For recurrent residues ∆f
(t)
0→1, they are learned via the GRU [40]:

∆f
(t)
0→1 = ConvGRU(f

(t)
0→1,F0, corr(F0,F (t)

1→0), C0) (3.14)

where F0 and F1 are frame features extracted by the Feature Net in Figure 3.3, F (t)
1→0 is bilinearly

sampled from F1 with optical flow f
(t)
0→1, corr(·, ·) computes the correlation between two tensors, C′

is the context features extracted by the Context Net in Figure 3.3. In addition, within ConvGRU()

operation, note that corr(F0,F (t)
1→0) produces a 4D Correlation Volume and it is passed to the Motion

Feature Decoder to generate the motion features y mentioned in Section 3.2.1. Then the context features

C as x and y are passed to the GMA module to generate [y|ŷ|x] that will eventually passed back to the

GRU to aggregate with other inputs and form ∆f
(t)
0→1.
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Learned residues are recurrently accumulated to update the base flow. The optical flow refined after T

iterations is shown as:

f
(T )
0→1 = f

(0)
0→1 +

T−1∑
t=0

∆f
(t)
0→1 (3.15)

while the fine flow f ′
0→1 is the output of the last iteration.

3.3 Frame Warping and Synthesis

To generate the intermediate frame with refined flow f ′
0→1 and f ′

1→0, the splatting and synthesis strategy

of SoftSplat [30] is adopted. Through a multi-scale CNN, features are extracted from I0 and I1 and then

splatted via forward warping to the center position.

For instance, I0 is splatted to I0→ 1
2

as:

I0→ 1
2
(x+

f0→1(x)

2
) = I0(x) (3.16)

Finally, all warped frames and features are fed into a GridNet [42] with three scale levels to synthesise

the target frame Î 1
2
.

3.4 Loss Functions

We use only image synthesis losses to supervise final outputs of the network and it consists of a combi-

nation of three terms. The inspiration comes from FILM [5].

3.4.1 L1 Loss

L1 reconstruction loss is used to measure the pixel-wise RGB difference between the predicted frame

Ît and the ground-truth It. It is defined as:

L1 = |Ît − It|1 (3.17)

Training through L1 loss can yield interpolation results that score well on benchmarks but typically

produce blurry outputs [5, 32]. This part will be further discussed in Section 5.1.
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3.4.2 VGG Loss

To enhance the image details, a perceptual loss using the L1 norm of the VGG-19 high-level feature

representation [38] is given by:

LV GG =
1

L

L∑
l=1

αl|Ψl(Ît)−Ψl(It)|1 (3.18)

where Ψl(It) ∈ RH×W×C is the feature map from the lth layer of a pre-trained ImageNet VGG-19 net-

work for a frame It ∈ RH×W×3. L is the number of the finer layers considered and αl is an importance

weight of the ith layer.

LV GG enforces structural similarity over a nearby region around each output pixel due to the receptive

fields of each VGG layer, and it is proven to ease the blurry artifacts in many image synthesis tasks

[43, 34, 44, 23, 45].

3.4.3 Gram Matrix Loss

Gram Matrix Loss is firstly discussed in [46] and further explained in [47]. It is the L2 norm of the

auto-correlation of the VGG-19 high-level feature representations [38]:

LGram =
1

L

L∑
l=1

αl|Ml(Ît)−Ml(It)|2 (3.19)

where Ml(It) ∈ RC×C is the Gram matrix of the interpolated frame at the lth layer and it is defined as:

Ml(It) = (Ψl(It))
T (Ψl(It)) (3.20)

According to [5], Gram Matrix Loss is effective in boosting image sharpness and preserving details

when inpainting disocclusions in sequences with large motion. During the experiment, we followed

similar setups as FILM, which uses five activations from VGG-19 namely relu1_2, relu2_2, relu3_2,

relu4_2, relu5_2 with corresponding weights of 0.3846, 0.2083, 0.2703, 0.1786, 6.6667, respectively.

3.4.4 Style Loss

The overall Style Loss is a combination of L1, LV GG, and LGram:

LS = wlL1 + wV GGLV GG + wGramLGram (3.21)
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with the weights (wl, wV GG, wGram) = (1.0, 0.25, 40.0) which was used in training the last 1.5M

epochs of FILM.



CHAPTER 4

Experiments

4.1 Project Constraint

Video Frame Interpolation requires an enormous amount of computing power as well as storage. More-

over, the training is likely to take more time than most the other deep learning tasks. Due to the limited

computing resources, we have access to and the project timeframe, we have to call off the experiments

when hitting a reasonable margin. Hence, the outputs mentioned in the below sections do not indicate

the best performance and we will provide sufficient evidence to support that the model can perform

better.

Also, as a result, the models are trained in a pause-resume manner to accumulate enough epochs, which

made it significantly difficult to time the entire process. Hence, we are unable to provide precise training

time information.

4.2 Dataset

Since Animation Video Interpolation is still at a very early stage, currently the only available dataset is

ATD-12K [4] and this is the major dataset we use throughout the experiments.

FIGURE 4.1: ATD-12K samples.

22
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The set contains 12,000 animation frame triplets divided by 10,000 as the training set and the remaining

2,000 are for evaluation purpose. The cartoon clips are extracted from works by various producers

including Disney, Hayao, Makoto, Hosoda, Kyoto Animation and A1 pictures. It provides triplets of

resolution 1920× 1080 and 1280× 720 but all our models are trained and tested at 960× 540.

In addition, the test set of ATD-12K comes with rich annotations including Difficulty Levels, Motion

RoIs and Motion Tags.

(1) Difficulty Levels. The test set is divided into three difficulty levels namely Easy, Medium, and

Hard. The criteria are based on the average magnitude of motions and the area of occlusions

in each triplet.

(2) Motion RoIs. A bounding box is provided for the second image in each triplet to locate the

foreground moving object. It is more suitable to examine the performance of interpolation

methods on those Room of Interests as the motions of those regions have more impact on the

visual quality.

(3) Motion Tags. For every triplet of the test set, the major motion is classified into two attributes

General Motion Type (Camera Movement) and (Character) Behavior.

General Motion Type includes translation, rotation, scaling, and deformation.

Behavior includes speaking, walking, eating, sporting, etc.

In our experiment, we focus more on the overall quality of the whole interpolated frames but we will

provide statistics related to difficulty levels and motion RoIs. Motion tags are not considered in the

evaluation.

4.3 Evaluation Metrics

We use frame1 and frame3 of each triplet as input frames to produce the interpolated middle frame and

then compare it against the original frame2 as the ground truth. We adopt common quantitative metrics:

Peak Signal-to-Noise Ratio (PSNR) and Structural Similarity Image Metric (SSIM) [8], while higher

PSNR and SSIM indicate better quality.

We also introduced LPIPS [12] to indicate the perceptual quality reflected by the interpolated frames

because PSNR and SSIM, are simple, shallow functions, and fail to account for many nuances of human

perception. To measure the LPIPS, we use the official LPIPS library with the AlexNet [48] backbone.
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4.4 Experiments Setup

According to Table 5.3, we have overall four models to compare.

4.4.1 AnimeInterp - L1

This model requires no training and it is the original AnimeInterp model from [4]. We directly loaded

the pre-trained weights to compare with other models, while the training by the authors consists of three

phrases:

• They first pre-train the RFR network following [41] including:

(1) FlyingChairs [49] dataset with Batch Size 8, Learning Rate 0.00025, Epochs 120000,

Input Size 368x496, Optimiser Adam with Weight Decay 0.0001.

(2) FlyingThings [50] dataset with Batch Size 5, Learning Rate 0.0001, Epochs 120000, Input

Size 400x720, Optimiser Adam with Weight Decay 0.0001.

(3) Sintel [51] dataset with Batch Size 5, Learning Rate 0.0001, Epochs 120000, Input Size

368x768, Optimiser Adam with Weight Decay 0.0001.

• They then fix the weights of RFR and train the rest parts of the network on QVI-960 [28] for

200 epochs using Adam without weight decay. Also, SGM flows are not input at this phase.

The learning rate is initialised as 10−4 and decreases with a factor of 0.1 at the 100th and 150th

epochs.

• Finally, they fine-tune the whole network for 50 epochs on the training set of ATD-12K with

constant learning rate 10−6. During fine-tuning, all the input frames are re-scaled into 960 ×

540 and then randomly cropped into 380 × 380 with batch size 16. Data augmentation of

stochastically flipping the images and reversing the triplet order are applied as well.

4.4.2 AnimeInterp - Ls

This model is for comparison purposes and is initialised using the pre-trained weights from 4.4.1. We

use the Style Loss function mentioned in 3.4.4 to fine-tune the model with Batch Size 8, Learning Rate

3 × 10−6 and Optimiser Adam [52] without weight decay. Data augmentation of random cropping,

flipping, and order-reversing are also applied. Due to 4.1, we can only train for 35 epochs and the results

in Table 5.3 are evaluated.
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4.4.3 AnimeInterp + GMA - L1

Refer to 4.4.1, it is impossible for us to train the AnimeInterp + GMA model completely from scratch

since training on the optical flow estimation network with tens of thousands of epochs requires a sig-

nificant amount of time. The workaround we perform is by loading the pre-trained weights to initialise

the model. We combine AnimeInterp’s pre-trained weights along with GMA’s weights pre-trained on

Sintel [3] as the initialisation for our training. We will discuss the effect brought by this decision in later

sections.

Then following 4.4.1, we freeze the weights of RFR + GMA module to train the rest parts of the network

on QVI-960 [28] for 110 epochs using Adam without weight decay. SGM flows are not used. The

learning rate is initialised as 10−4 and decreases with a factor of 0.1 at the 45th and 90th epochs.

Finally, we fine-tune the whole network for 195 epochs on ATD-12K’s training set using L1 loss function

with initial learning rate at 10−6 and increase to 3×10−6 at 161st epoch due to lack of time. Fortunately,

the loss still manages to decrease. Aforementioned data augmentation is also applied in the training with

the aid of Adam optimiser without weight decay.

4.4.4 AnimeInterp + GMA - Ls

Recall from FILM’s training setup[5], the authors first train the network using weights (wl, wV GG, wGram) =

(1.0, 1.0, 0.0) mentioned in 3.4.4 because enabling LGram will prevent the model from converging. And

the weights (wl, wV GG, wGram) = (1.0, 0.25, 40.0) are enabled after 1.5M iterations. By having L1 loss

oriented, and then switching to the style loss allows FILM to finally converge and provide astonishing

results.

Following similar approach, AnimeInterp + GMA - Ls is actually the second stage of the training. We

load the weights attained after 195 epochs trained on L1 loss in 4.4.3 and continue on training with Ls

style loss. We set the learning rate to 3 × 10−6 to save time and maintain all the training parameters

and data augmentation identical to previous training. We also train this model for 35 epochs and then

evaluate the results in Table 5.3.



CHAPTER 5

Results

5.1 Preliminary Experiments

Our objective is to improve the performance of the state-of-the-art model AnimeInterp. Hence, we run

several preliminary experiments to summarise the shortage of AnimeInterp and hence to find where we

can improve upon it.

5.1.1 AnimeInterp Reproduction

We first use the pre-trained weights provided by [4] to re-run the original implementation of AnimeInterp

on ATD-12K. The quantitative result is summarised in Table 5.3 as AnimeInterp - L1 since the weights

are trained fully on L1 distance according to S. Li.

We also conduct visual comparison and summarise the results into several categories:

(1) Out-of-frame Movements. The foreground object contains parts that are only available in

either one of the frame, which significantly increases the difficulty of optical flow estimation

since the matching colour piece (for SGM) or pixel (for RFR) is completely out of the frame.

FIGURE 5.1: Out-of-frame Movements: Japan_v2_2_033283_s3 (The lowest PSNR
among 2,000 triplets).

(2) Blur. The synthesised parts in the interpolated frame are blurry especially for the contours.

26
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FIGURE 5.2: Blur: Disney_v4_20_043850_s1.

(3) Colour Bleeding. Weird colour stripes appear in regions filled with similar colours. It is more

likely to occur when the region is relatively large (roughly larger than a quarter of a frame).

FIGURE 5.3: Colour Bleeding: Disney_v4_14_002999_s1 (The lowest SSIM among
2,000 triplets).

5.1.2 AnimeInterp vs. FILM

TABLE 5.1: AnimeInterp vs. FILM on ATD-12K. Note that the LPIPS computed is
multiplied by 100 for readability.

Model PSNR↑ SSIM↑ LPIPS↓
AnimeInterp 29.632 0.939 6.650
FILM 28.724 0.932 5.638

We use FILM [5] with pre-trained weights to interpolate the test set of ATD-12K to compare the results

with outputs from Section 5.1.1. The quantitative summary is in Table 5.1.

TABLE 5.2: ∆ PSNR and ∆ SSIM between FILM and AnimeInterp

Maximum and Minimum Values
Max ∆ PSNR 11.868
Min ∆ PSNR -11.921
Max ∆ SSIM 0.140
Min ∆ SSIM -0.114
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FILM
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AnimeInterp

MIN Δ SSIMMIN Δ PSNR

FIGURE 5.4: Min ∆ PSNR and Min ∆ SSIM

We introduce a measurement ∆ = V alueAnimeInterp − V alueFILM to compare the results aiming

to find samples which FILM outperforms AnimeInterp. The maximum and minimum are shown in

Table 5.2. According to the result, the differences are very large which means there are frames that

FILM tackles extremely well comparing to AnimeInterp (Figure 5.4). In the synthesised result of Min

∆ PSNR, FILM has restored the train perfectly and with sharp outlines. Do note that the pre-trained

weights of FILM are collected from models trained on natural video datasets [5] and it generalises so

well on animation data.

5.2 Quantitative Evaluation

The quantitative results are shown in Table 5.3. Note that the LPIPS computed is multiplied by 100 for

readability.
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TABLE 5.3: Quantitative results on the test set of ATD-12K. The best and runner-up
values are bold and underlined, respectively.

Whole RoI Easy Medium Hard
Method LPIPS↓ PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑
AnimeInterp - L1 6.650 29.675 0.958 26.265 0.910 31.864 0.971 29.256 0.959 27.068 0.939
AnimeInterp - Ls 5.836 28.446 0.949 25.107 0.892 30.887 0.967 28.102 0.951 25.400 0.922
AnimeInterp + GMA - L1 6.884 29.613 0.959 26.202 0.910 31.838 0.972 29.200 0.960 26.949 0.940
AnimeInterp + GMA - Ls 5.233 28.771 0.952 25.364 0.895 31.024 0.968 28.327 0.953 26.101 0.928

FIGURE 5.5: Interpolation Error of Evaluation on ATD-12K Test Set for AnimeIn-
terp + GMA L1.

Based on PSNR, AnimeInterp - L1 outperforms all other methods in both Whole and RoI regions as

well as all three difficulty levels. While for SSIM, AnimeInterp + GMA - L1 comes first in Whole,

RoI and all three difficulty levels but the differences between the runner-up values are less noticeable.

However, do note that AnimeInterp + GMA - L1 lacks of proper optical flow estimation training and it

is not yet converged refer to Figure 5.5 where a decreasing trend in interpolation error and Figure 5.6 an

increasing trend in PSNR can still be observed in 195th epoch. We believe that if we are given sufficient

time to train AnimeInterp + GMA - L1, it will eventually surpass AnimeInterp - L1. Moreover, if it is

possible to train the full model from scratch starting from the flow estimation, the performance can be

improved to a higher degree.

Similar to the results from FILM [5], after training using the Style loss, the model’s performance on

PSNR and SSIM tends to drop. AnimeInterp drops 1.229 dB in PSNR and 0.009 in SSIM but having

LPIPS decreased by 0.814. AnimeInterp + GMA model drops 0.842 dB in PSNR and 0.007 in SSIM

but having LPIPS decreased significantly by 1.661 which is nearly double the decrease of AnimeInterp.
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FIGURE 5.6: PSNR of Evaluation on ATD-12K Test Set for AnimeInterp + GMA L1.

Hence, AnimeInterp + GMA - Ls surpasses all the other methods in LPIPS. Note that both models

complete their training on the style loss with exactly the same parameters and setup. It seems like

AnimeInterp + GMA model is more compatible with the Style loss.

5.3 Qualitative Evaluation

5.3.1 Blurry Boundary in Estimated Flows

We have noticed that among most of the visualisation of refined flows synthesised by AnimeInterp +

GMA, the boundaries are blurry and rough (see Figure 5.7). We believe this is due to lack of training in

the optical flow estimation module (RFR + GMA).

5.3.2 Out-of-Frame Motion

We introduce the Global Motion Aggregation module into the AnimeInterp aiming to predict Out-of-

frame movements. However, due to training constraints, the model performs less satisfactory quanti-

tative results mentioned in 5.3. Figure 5.8 shows a typical case of Out-of-frame movements. The full
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AnimeInterp + GMA AnimeInterp

FIGURE 5.7: Visual Comparison between Refined Flows output from AnimeInterp and
AnimeInterp + GMA

upper body of the left pedestrian is only available in F3 and the right pedestrian’s back of the head is

also just available in F3. AnimeInterp fails to re-create the left pedestrian in addition to the back of the

head of the right pedestrian. However, by AnimeInterp + GMA, the major parts of both pedestrians are

interpolated.

5.3.3 Sharpness

To evaluate the effectiveness of the Gram Matrix-based loss function in preserving image sharpness, we

visually compare two models against its L1 version. As shown in Figure 5.9, models trained with Ls

synthesises visually superior results, with crisp image details on the clothes and preserving the shapes

of flowers located at the corners.

5.3.4 Detail Inpainting

We find that the interpolated frames produced by models trained with Ls are able to recover details that

are totally ignored by models trained with L1. According to FILM [5], they have analysed the disocclu-

sion inpainting. However, in Figure 5.10, the foreground dragon appears fully in all three frames, but

we can still see the inpainting detail such that the dragon’s claws are revealed by Ls models.
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𝐹𝐹1 𝐹𝐹3𝐹𝐹2

AnimeInterp + GMAAnimeInterp

ℒ1

ℒ𝑠𝑠

FIGURE 5.8: Visual Comparison along with Ground-truth on Japan_v2_0_104298_s2

ℒ1 ℒ𝑠𝑠𝐺𝐺𝐺𝐺

FIGURE 5.9: Visual Comparison along with Ground-truth on Japan_v2_3_129363_s3
and Japan_v2_2_008563_s1

We believe this is a new finding since we have not yet found any literature mentioning this behaviour

and it can one of the key features of applying the Style loss in animation video frame interpolation. A

more obvious example is shown in Figure 5.11.
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ℒ1
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𝐺𝐺𝐺𝐺

FIGURE 5.10: Visual Comparison along with Ground-truth on Japan_v2_3_162765_s2

5.4 Limitations

Apart from Section 4.1 which leads to an underfit optical flow estimation model, in some cases, the

model will produce unnatural deformations. Moreover, the stability of the model is not guaranteed since

the model is not trained thoroughly. It is possible to fail some relatively easy triplets.

SGM. Although we are not able to provide precise training time information, it is still necessary to

mention the performance of the SGM module. To generate SGM flows for a triplet, on average it will

take 3 minutes on our system. As a result of that, it is impossible to compute SGM in real-time and

the only approach is through pre-computing. There are overall 10,000 training triplets in ATD-12K

whose SGM flows are not provided. As SGM flows are necessary for training the model, we spend

numerous amounts of time purely on pre-computing the SGM flows. According to the ablation study

from AnimeInterp [4], disabling the SGM module results in a 0.14dB decrease in PSNR. We think

it is a fair trade-off of removing the SGM module for future improvements. Moreover, the storage

consumption of the SGM flows for the 10,000 training triplets is roughly 160 GB which is relatively

larger compared to all the other public datasets.
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𝐹𝐹1 𝐹𝐹3𝐹𝐹2

AnimeInterp + GMAAnimeInterp

ℒ1

ℒ𝑠𝑠

FIGURE 5.11: Visual Comparison along with Ground-truth on Disney_v4_21_041221_s2



CHAPTER 6

Conclusion and Future Work

6.1 Conclusion

This work proposes an improvement to the current style-of-the-art animation video frame interpolation

model AnimeInterp [4] with the Global Motion Aggregation module [3] aiming to tackle occlusions.

In addition, a different training objective (Style Loss) is applied to improve the perceptual quality of

interpolated frames based on the justification of different intentions between Video Frame Interpolation

and Animation Frame Interpolation.

Chapter 3 outlines the deep down methodology of the workflow from receiving the inputs to flow es-

timation, flow refinement and eventually frame synthesis. In Chapter 4, we describe the setup for the

experiments including training and evaluation datasets, evaluation metrics, and training parameters. Fi-

nally, in Chapter 5, we discuss the results of both preliminary and final experiments. Our proposed model

trained on L1 loss outperforms AnimeInterp in SSIM and has shown a potential increase in PSNR for

future training. For the model trained with the Style loss, it surpasses AnimeInterp - Ls on PSNR, SSIM

and LPIPS.

6.2 Future Work

Generative Adversarial Networks (GANs) for Animation Frame Interpolation. As GANs have

achieved noticeable results in generating artistic content and style transfer, we believe the technique can

also be applied to AFI. Moreover, we have shown the significant effect that a well-designed loss function

can achieve while adversarial losses can also leverage. Also, GANs are proficient at generating pixels,

which is possible to surpass the constraints that warped pixels from current models possess.

35
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Further Distillation on ATD-12K Data. Visually, Western animation style (Videos are usually referred

to as Cartoons) and Japanese animation style (Videos are usually referred to as Animes) are distinguish-

able. Since we have shown that Style Loss is a powerful aid, we believe that further designating models

for a particular style can yield better results. As in this work, we train the model using data from both

styles and it has to find a fit between Western and Japanese data.

The source code and pre-trained models are available at https://github.com/Soooda/AFI.

https://github.com/Soooda/AFI
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